Presets specified: ['best_quality']
Stack configuration (auto_stack=True): num_stack_levels=0, num_bag_folds=8, num_bag_sets=1
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20240117_104722/"
AutoGluon Version: 0.8.2
Python Version: 3.8.18
Operating System: Linux
Platform Machine: x86_64
Platform Version: #38~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 2 18:01:13 UTC 2
Disk Space Avail: 638.29 GB / 982.82 GB (64.9%)
Train Data Rows: 9009
Train Data Columns: 1
Label Column: is_fraud
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [1, 0]
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = 1, class 0 = 0
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 50252.83 MB
Train Data (Original) Memory Usage: 0.07 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('float', []) : 1 | ['amt']
Types of features in processed data (raw dtype, special dtypes):
('float', []) : 1 | ['amt']
0.0s = Fit runtime
1 features in original data used to generate 1 features in processed data.
Train Data (Processed) Memory Usage: 0.07 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.04s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ...
/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/torch/cuda/__init__.py:497: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
0.8782 = Validation score (accuracy)
0.01s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ...
0.8641 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.885 = Validation score (accuracy)
0.46s = Training runtime
0.03s = Validation runtime
Fitting model: LightGBM_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.894 = Validation score (accuracy)
0.65s = Training runtime
0.02s = Validation runtime
Fitting model: RandomForestGini_BAG_L1 ...
0.856 = Validation score (accuracy)
0.33s = Training runtime
0.19s = Validation runtime
Fitting model: RandomForestEntr_BAG_L1 ...
0.856 = Validation score (accuracy)
0.53s = Training runtime
0.19s = Validation runtime
Fitting model: CatBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8947 = Validation score (accuracy)
1.39s = Training runtime
0.0s = Validation runtime
Fitting model: ExtraTreesGini_BAG_L1 ...
0.8622 = Validation score (accuracy)
0.34s = Training runtime
0.2s = Validation runtime
Fitting model: ExtraTreesEntr_BAG_L1 ...
0.8626 = Validation score (accuracy)
0.3s = Training runtime
0.21s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.867 = Validation score (accuracy)
7.35s = Training runtime
0.09s = Validation runtime
Fitting model: XGBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8944 = Validation score (accuracy)
0.6s = Training runtime
0.03s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8888 = Validation score (accuracy)
14.93s = Training runtime
0.05s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8941 = Validation score (accuracy)
0.86s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.8948 = Validation score (accuracy)
2.12s = Training runtime
0.01s = Validation runtime
AutoGluon training complete, total runtime = 41.08s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20240117_104722/")